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Lorentz-invariant look at quantum clock-synchronization protocols based
on distributed entanglement
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Recent work has raised the possibility that quantum-information-theory techniques can be used to synchro-
nize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization~QCS!
requires distribution of entangled pure singlets to the synchronizing parties@R. Jozsaet al., Phys. Rev. Lett.85
2010~2000!#. Such remote entanglement distribution normally creates a relative phase error in the distributed
singlet state, which then needs to be purified asynchronously. We present a relativistic analysis of the QCS
protocol that shows that asynchronous entanglement purification is not possible, and, therefore, the proposed
QCS scheme remains incomplete. We discuss possible directions of research in quantum-information theory,
which may lead to a complete, working QCS protocol.
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I. INTRODUCTION: A QUANTUM PROTOCOL
FOR CLOCK SYNCHRONIZATION

Suppose a supply of identical but distinguishable tw
state systems~e.g., atoms! is available whose between-sta
transitions can be manipulated~e.g., by laser pulses!. Let u1&
andu0& denote, respectively, the excited and ground state
the prototype two-state system~which span the internal Hil-
bert spaceH), and let the energy difference between the t
states beV ~we will use units in which\5c51 throughout
this paper!. Without loss of generality, we can assume

Ĥ0u0&50, Ĥ0 u1&5Vu1&, ~1!

where Ĥ0 denotes the internal Hamiltonian operator. Su
pose pairs of these two-state systems are distributed to
spatially separated observers Alice and Bob. The Hilb
space of each pair can be written asHA^ HB , where ^

denotes the tensor product of the two vector spaces. A~‘‘per-
fect’’ ! singlet is the specific entangled quantum state in
product Hilbert space given by

C5
1

A2
~ u0&A^ u1&B2u1&A^ u0&B). ~2!

@In what follows, we will omit tensor-product signs in ex
pressions of the kind of Eq.~2! unless required for clarity.#
Two important properties of the singlet stateC are as fol-
lows. ~i! It is a ‘‘dark’’ state ~invariant up to a multiplicative
phase factor! under the time evolutionÛt[exp(itĤ0), i.e.,
(Ût ^ Ût)C5eifC, whereeif is an overall phase, and~ii ! it
is similarly invariant under all unitary transformations of th
form Û ^ Û, whereÛ is any arbitrary unitary map onH ~not
necessarily equal toÛt). Both properties are needed for th
quantum clock-synchronization~QCS! protocol of Jozsa
et al. @1#, which assumes a supply of such pure singlet sta
shared as a resource between the synchronizing parties
1050-2947/2002/65~5!/052317~6!/$20.00 65 0523
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and Bob~in addition, Bob and Alice are assumed to be s
tionary with respect to a common reference frame!. Specifi-
cally, consider the unitary~Hadamard! transformation (p/2
pulse followed by the spin operatorŝz) on H given by

u0&°u1&[
1

A2
~ u0&1u1&),

u1&°u2&[
1

A2
~ u0&2u1&). ~3!

Unlike the statesu0& and u1&, which are dark under time
evolution~they only pick up an overall phase underÛt), the
statesu1& and u2& are ‘‘clock states’’~in other words, they
accumulate an observable relative phase underÛt) because
of the energy differenceV as specified in Eq.~1!. Such states
can be used to ‘‘drive’’ precision clocks in the followin
way: Start, for example, with an ensemble of atoms in
stateu1& produced by an initial Hadamard pulse at timet0,
and apply a second Hadamard pulse at a later timet01T.
This leads to a final state att01T equivalent, up to an over
all phase factor, to the state

cosS V

2
TD u0&1 i sinS V

2
TD u1&. ~4!

Measurement of the statistics~relative populations! of
ground vs excited atoms in the state Eq.~4! then yields a
precision measurement of the time intervalT; hence clock
functionality for u1&. @In practice, such measurements a
used to stabilize the frequency of a relatively noisy loc
oscillator ~typically a maser!, whose~stabilized! oscillations
then drive the ultimate clock readout.# Now, the invariance
of the pure singletC @Eq. ~2!# under the Hadamard transfo
mation Eq.~3! can be seen explicitly in the alternative re
resentation
©2002 The American Physical Society17-1



f

v
n

nt
ly

th

n-
oc
a

tu

m

v
o

a

ro
c.
th
ys
th

he

ur
y
in
m
un
es
ov
b

ol
si
ex
-
ol
fe
ur
ow
th
d
a
at
e

ort
t
cal

the
-
e
rifi-

is
e-

s

a-
ob-
on-

ck
le-
that
ay
re-
s

s of
b-

-
en-
ub-
ed,
in

ines
isely

lay
c.

n-
s
-
er-
port

h-

ULVI YURTSEVER AND JONATHAN P. DOWLING PHYSICAL REVIEW A65 052317
C5
1

A2
~ u2&A^ u1&B2u1&A^ u2&B). ~5!

Here, in Eq.~5!, we have the crux of the QCS algorithm o
Ref. @1#: The dark, invariant stateC, shared between Alice
and Bob, contains two clock states, one for each obser
entangled in such a way as to ‘‘freeze’’ their time evolutio
As soon as Bob or Alice performs a measurement onC in
the basis$u1&,u2&%, thereby destroying the entangleme
he or she starts these two dormant clocks ‘‘simultaneous
in both reference frames. Classical communications are
necessary to sort out which party has theu1& clock and
which party hasu2&. When used to stabilize identical qua
tum clocks at each party’s location, these correlated cl
states then provide precise time synchrony between Bob
Alice @2#.

It is important to emphasize that the nondegenerate na
of the singlet stateC @Eq. ~2!# is crucial for the QCS proto-
col to work. This is in complete contrast with other quantu
information-theory protocols~such as teleportation@3#, quan-
tum cryptographic key distribution@4#, and others! all of
which will work equally well with degenerate (V50) sin-
glets.

What is the significance of entanglement in the abo
protocol? As has been pointed out by a number of auth
@5,6# following the original publication@1#, the QCS protocol
is completely equivalent to slow clock transport as long
the entanglement in the singlet state Eq.~2! is distributed by
transporting the entangled pairs kinematically to the synch
nizing parties Alice and Bob~see also the discussion in Se
II below!. The potentially far-reaching consequences of
QCS algorithm become clear when we realize that the ph
cal transport of entangled constituents is by no means
only way to distribute entanglement, though it is by far t
most obvious.

Notice thatprovided such a ‘‘nonlocal’’ method of en-
tanglement distribution is available to practically create p
singlets of the form Eq.~2!, the QCS algorithm gives a wa
of synchronizing clocks across arbitrarily large distances,
dependent of the medium that separates the two ato
clocks to be synchronized—so long as a classical comm
cations link exists between the two synchronizing parti
Since the synchrony transfer takes place instantaneously
the quantum channel, no timing information needs to
passed over the classical channel. This allows the protoc
bypass a number of noise sources present on the clas
link ~such as an interceding medium with fluctuating ind
of refraction!, which currently limit the accuracy of satellite
to-satellite and satellite-to-ground synchronization protoc

There are a number of ‘‘nonlocal’’ entanglement trans
protocols that have been discussed in the theory literat
and some of these are briefly considered in Sec. VI bel
Most of the rest of this paper, however, is devoted to
analysis of what is perhaps the next most obvious metho
entanglement transfer: entanglement purification. The ide
entanglement purification is to distribute the entangled st
Eq. ~2!, to the synchronizing parties in some noisy mann
~possibly via simple kinematical transport!, and then to pu-
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rify the resulting imperfect singlet state by using some s
of asynchronous purification protocol~i.e., one that does no
rely on preestablished time synchrony between the lo
clocks of Alice and Bob! which may involve~asynchronous!
classical communication between the parties~as well as the
loss of some fraction of the noisy singlets depending on
fidelity of the original transport and the yield of the purifi
cation protocol!. In this paper we will give an answer to th
fundamental question: Is asynchronous entanglement pu
cation possible?

II. THE PRESKILL PHASE OFFSET

In principle, the QCS protocol as outlined in Sec. I
rigorously correct and self-contained. If our Universe som
how possessed primordial nondegenerate singlet stateC
~leftover as ‘‘relics’’ from the Big Bang!, the protocol just
described would be perfectly sufficient to implement ultr
precise clock synchronization between comoving distant
servers. In practice, however, the QCS algorithm can reas
ably be viewed as simply reducing the problem of clo
synchronization to the problem of distributing pure entang
ment to spatially separated regions of space-time. To see
the latter is a nontrivial problem, consider the simplest w
one would attempt to distribute entanglement to remote
gions: start with locally created pairs of two-level system
~atoms! in pure singlet statesC of the form Eq.~2!, and
transport the two subsystems separately to the location
Bob and Alice. The internal Hamiltonians of the two su
systems while in transport can be written in the form

ĤA5Ĥ01ĤA
ext, ĤB5Ĥ01ĤB

ext, ~6!

whereĤA
ext andĤB

ext denote interaction Hamiltonians aris
ing from the coupling of each subsystem to its external
vironment, and, unless the environment, which each s
system is subject to during transport is precisely controll
ĤA

extÞĤB
ext in general, leading to a relative phase offset

the final entangled state. Furthermore, unless the world l
of the transported subsystems are arranged to have prec
the same Lorentz length~proper time!, a further contribution
to this phase offset would occur due to the proper-time de
between the two world-lines~see also the discussion in Se
IV below!. The end result is an imperfect singlet state

Cd5
1

A2
~ u0&Au1&B2eidu1&Au0&B), ~7!

whered is a real phase offset that is fixed but entirely u
known, which we call ‘‘the Preskill phase’’ in honor of it
original discoverer@6#. In general, coupling to the environ
ment will lead to other errors such as bit flips and decoh
ence, resulting in a mixed state at the end of the trans
process. These kinds of errors, however, are correctable~af-
ter restoring energy degeneracy to the qubit basis$u0&,u1&% if
necessary! by using standard entanglement purification tec
niques@7#. The phase error in Eq.~7!, however, is inextrica-
7-2
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bly mixed with the synchronization offset between Alice a
Bob, as we will argue below, and it cannot be purified as
chronously.

Although Cd is still a dark state under time evolution,
no longer has the key property of invariance under arbitr
unitary transformationsÛ ^ Û. In particular, an equivalen
form in terms of entangled clock states@such as in Eq.~5!# is
not available forCd @8#. Instead,

Cd5S 11eid

2A2
D ~ u2&Au1&B2u1&Au2&B)

1S 12eid

2A2
D ~ u1&Au1&B2u2&Au2&B), ~8!

and a measurement by Bob or Alice in the$u1&,u2&% basis
will leave the other party’s clock in a superposition of clo
statesu1& and u2&, which, if Bob and Alice were to follow
the above QCS protocol blindly, effectively introduces
~unknown! synchronization offset of2d/V between them.

III. QCS AS TELEPORTATION OF CLOCKS

This connection betweend and the time-synchronizatio
offset is much easier to understand by adopting a differ
point of view for the QCS protocol: one which is based
teleportation@3#. Accordingly, the essence of the QCS pr
tocol can be viewed as the teleportation of clock states
tween Bob and Alice using the singlet statesC ~or, in the
present case, the imperfect singletsCd). More explicitly,
suppose Bob and Alice arrange, through prior classical c
munications, the teleportation of a known quantum st
au0&B81bu1&B8 PHB8 from Bob to Alice via the singlet
Cd . Since the teleported state, as well as Bob’s Bell-ba
states@3#

C6[
1

A2
~ u0&Bu1&B86u1&Bu0&B8),

F6[
1

A2
~ u0&Bu0&B86u1&Bu1&B8) ~9!

are, in general, time dependent, the standard teleporta
protocol needs to be slightly modified in the following wa
The parties need to agree on a time, which we may t
without loss of generality to betB50 as measured by Bob’
local clock, at which the following three actions will be pe
formed instantaneously by Bob.

~i! Prepare an ancillary two-state systemB8 in the known
quantum stateau0&B81bu1&B8 , wherea andb are complex
numbers previously agreed on by the two parties.

~ii ! Select a specific singletCd as in Eq.~7!, and construct
a Bell basis forHB^ HB8 that has the form Eq.~9! at tB
50.

~iii ! Perform a measurement in this basis and commu
cate its outcome to Alice through a classical channel. Up
receipt of this outcome, Alice is then to rotate the~collapsed!
05231
-

y

nt

e-

-
e

is

on

e

i-
n

quantum state of her half of the singletCd ~now a vector in
the Hilbert spaceHA) by one of the four unitary operators

M̂C65S 61 0

0 2e2 iVtAD ,

M̂F65S 2e2 iVtA 0

0 61D , ~10!

depending on whether the transmitted outcome of Bo
measurement is one ofC1,C2,F1 or F2. HeretA denotes
Alice’s proper time~as measured by her local clock! at the
moment she performs her unitary rotation. Now let the~un-
known! synchronization offset between Bob and Alice bet,
so thattB5tA1t. It is easy to show that the state teleport
to Alice under this arrangement will have the form

au0&A1ei (2Vt1d)bu1&A, ~11!

as obtained by Alice immediately following her unitary o
eration~one ofM̂C6, M̂F6 @Eqs.~10!#! on HA .

A number of key results can now be easily read out fro
Eq. ~11!.

~1! If d50, i.e., under the same assumption as in
original QCS protocol@1# that the shared singlet states a
pure, the time-synchronization offsett can be immediately
determined by Alice~recall thata andb are known to both
parties!. Hence, the synchronization result of the QCS p
tocol can equivalently be achieved through teleportation.

~2! Conversely, ift50, i.e., if Bob and Alice have their
clocks synchronized to begin with, or ifV50, i.e., if the
qubits spanning the local Hilbert spacesHA andHB are de-
generate, thend can be immediately determined by Alice
Hence, purification of the phase-offset singletCd is possible
under either of these two conditions.

~3! If, on the other hand, none of the quantitiesV,t, and
d vanish, then the two unknownst and d are inextricably
mixed in the only phase observable2Vt1d, and asynchro-
nous purification cannot be achieved via teleportation.

This last conclusion can be greatly clarified and streng
ened by a Lorentz-invariant formulation of the above telep
tation protocol~which, as we just argued, is equivalent to t
original QCS!, and it is this formulation we will turn to next

IV. LORENTZ-INVARIANT ANALYSIS OF QCS

The key ingredient in any relativistic discussion
quantum-information theory is the space-time dependenc
the qubit states. The ‘‘true’’ Hilbert space to which the qua
tum state of a singlet belongs is, accordingly,L2(R4) ^ H A
^ L2(R4) ^ HB , where eachL2(R4) is supposed to accoun
for the space-time wave function of each two-state system
the entangled pair@for simplicity ~but without any loss of
generality!, we consider only scalar~as opposed to spinor!
qubits#. We will assume in what follows that backgroun
space-time is flat~Minkowski!, and that the space-time de
pendence of each system’s wave function can be appr
mated by that of a plane wave. In a more careful treatm
7-3
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ULVI YURTSEVER AND JONATHAN P. DOWLING PHYSICAL REVIEW A65 052317
plane waves should be replaced by localized, normaliza
wave packets.

We emphasize that a fully relativistic theory of quantu
information would have to be formulated in the framewo
of relativistic quantum field theory. Since such a full-fledg
formalism does not yet exist, we will confine our attention
a naive, ‘‘first-quantized’’ analysis, which is adequate for
qualitative understanding of the role of Lorentz invariance
QCS.

Denote the four-velocities of Alice and Bob byuA and
uB , respectively, so thatuA•uA5uB•uB521 @we will adopt
the sign convention in which Minkowski metric onR4 has
the formh52dt^ dt1dx^ dx1dy^ dy1dz^ dz, and use
the abbreviationa•b to denoteh(a,b) for any two four-
vectorsa andb]. The wave four-vectors of Alice’s and Bob’
atoms then have the form

k0
J5m0uJ , k1

J5~m01V!uJ , ~12!

where m0 is the ground-state rest mass of each~identical!
two-level atom, andk0

J and k1
J denote the wave vector

corresponding to the ground and excited states of the ato
respectively, whereJ5A,B. The plane-wave space-time d
pendence of the wave functions corresponding to the gro
and excited states of each of the atoms can then be writte
the form

u0&J→eik0
J•xu0&J , u1&J→eik1

J•xu1&J , ~13!

where J5A,B, and x denote an arbitrary point~event! in
space-time~a four-vector!. Simple algebra then shows tha
up to an overall phase factor~which can always be ignored!,
the wave function corresponding to the singlet state Eq.~7!
can be expressed as a two-point space-time function of
form

Cd~x1 ,x2!5u0&Au1&B2eiFd(x1 ,x2)u1&Au0&B , ~14!

wherex1 and x2 denote space-time points along the wo
lines of Alice and Bob, respectively, andFd(x1 ,x2) is the
Lorentz-invariant two-point phase function

Fd~x1 ,x2![V~uA•x12uB•x2!1d. ~15!

In the important special case whereuA5uB5u, i.e., when
Alice and Bob are comoving~and it makes sense to synchr
nize their clocks!, Fd takes the simpler form

Fd~x1 ,x2!5Vu~x12x2!1d. ~16!

In the comoving case, Eq.~16!, ~whenuA5uB), the singlet
wave functionCd(x1 ,x2) is invariant under arbitrary Lor-
entz transformations including translations. This is in co
trast with the general case, where the phase func
Fd(x1 ,x2) @Eq. ~15!# does not have translation invarianc
This dependence on the choice of origin of coordinates
manifestation of the fact thatCd is not a dark state unles
uA5uB .
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V. DISCUSSION: IS ASYNCHRONOUS ENTANGLEMENT
PURIFICATION POSSIBLE?

The teleportation protocol of Sec. III~which is equivalent
to the original QCS protocol of@1#! demonstrates that a
long asx1 andx2 are timelike separated events in space tim
the relative phaseFd(x1 ,x2) can be directly observed b
Alice and Bob via quantum measurements followed by cl
sical communication of the outcomes. An observation
Fd(x1 ,x2) would commence by the selection by Alice an
Bob of space-time pointsx1 and x2 along their respective
world lines at which they wish to measure this invaria
phase function. Bob then would carry out his part of t
teleportation protocol of Sec. III at his proper time corr
sponding to the eventx2, and broadcast the outcome to Alic
along a nonspacelike communication path that reaches A
beforex1. Alice would subsequently apply her unitary rot
tion @Eqs.~10!# sharp at her proper time corresponding to t
eventx1. The resulting teleported state then has the form
~11!, where the relative phase is preciselyFd(x1 ,x2). Con-
versely, since the wave function contains all knowledge t
can ever be obtained about a quantum system, theonly ~clas-
sical! observable associated with the singlet stateCd that
contains any information aboutd is Fd(x1 ,x2).

Focusing now on the comoving caseuA5uB , the above
fact implies that the phase offsetd cannot be observed in
isolation; only the combination two-point functiond
1Vu(x12x2) @Eq. ~16!# is accessible to direct measur
ment. On the other hand, clock synchronization between B
and Alice is equivalent to identification of pairs of even
(x1

( i ) ,x2
( i )) such thatu(x1

( i )2x2
( i ))50. Therefore, by making a

sequence of measurements of the relative phase func
Fd(x1 ,x2), Alice and Bob can use the singletsCd as a
shared quantum-information resource to~i! synchronize their
clocks if d50 , and~ii ! measure and purifyd if they have
synchronized clocks to start with. In the general case of
unknown d and an unknown time-synchronization offse
however,d by itself is not observable, and, consequently,Cd
cannot be purified without first establishing time synchro
between the two parties.

Note that this argument iscompletely independentof the
particular protocol that may be used to purify the entang
ment Eq. ~7!. Instead, the argument relies entirely on t
nature of the space-time wave function describing an
tangled pair, and this ‘‘universality’’ is its primary signifi
cance. The crucial observation is that the invariant two-po
phase functionFd(x1 ,x2) is theonly observable in the sin-
glet state Eq.~7!, and this function depends not only on thea
priori relative phased, but also, through its dependence, o
both x1 andx2, on thea priori time-synchrony information
between Alice and Bob. Since the relative-phase informat
cannot be separated from time-synchrony information
long as the qubits remain nondegenerate, no protocol
does not rely on prior time synchrony in an essential way
purify the entanglement so as to distill pure (d50) en-
tangled pairs.

VI. CONCLUSIONS AND FUTURE WORK

By using entangled~nondegenerate! qubits as a resource
shared between spatially separated observers, the QCS
7-4
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tocol as reformulated above in Secs. III–V allows the dir
measurement of certain nonlocal, covariant phase funct
on space-time. Moreover, this functionality of the protoco
straightforward to generalize to many-particle entanglem
@9#. While these results give hints of a profound connect
between quantum information and space-time structure,
fall just short of providing a practical clock-synchronizatio
algorithm because of the uncontrolled phase offsets@e.g,d in
Eq. ~7!# that arise inevitably during the distribution of en
tanglement. Since, as we showed above, these phase o
cannot be purified asynchronously after they are alread
place, a successful completion of the~singlet based! QCS
algorithm would need some method of entanglement dis
bution that avoids the accumulation of relative phase offs
We believe a complete clock-synchronization algorith
based on quantum information theory will likely result fro
one of the following approaches.

‘‘Phase-locked’’ entanglement distribution. It may be pos-
sible to use the inherent nonlocal~Bell! correlations of the
singlet states~which remain untapped in the current QC
protocol!, and implement a ‘‘quantum feedback loop
which, during entanglement transport, will help keep t
phase offsetd vanishing to within a small tolerance of erro
For example, states of the form

1

A2
~ u0&Au1&A8u1&Bu0&B82u1&Au0&A8u0&Bu1&B8), ~17!

where two pairs of atoms~the primed and the unprimed pai!
are entangled together, are not only dark but also immun
phase offsets during transport of the pairs to Alice and B
~provided both pairs are transported along a common w
line through the same external environment!. Can such
phase-offset-free states be used to control the purity of
glets during transport?

Entanglement distribution without transport. Physically
moving each prior-entangled subsystem to its separate sp
location is not the only way to distribute entanglement.
intriguing idea, recently discussed by Cabrilloet al. @10#,
proposes preparing two spatially separated atoms in t
long-lived excited statesu1&Au1&B . A single-photon detector
which cannot~even in principle! distinguish the direction
from which a detected photon arrives, is placed halfway
tween the atoms. When one of the atoms makes a trans
to its ground state, and the detector registers the em
photon, the result of its measurement is to put the combi
two-atom system into the entangled state

1

A2
~ u0&Au1&B1eifu1&Au0&B), ~18!

where f is a random phase. Is there a similar proced
~based on quantum measurements rather than physical t
port! that creates entanglement with a controlled rather t
random phase offsetf?

Another method of entanglement distribution witho
transport, recently investigated in detail by Haroche and
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workers @11# is ~in very rough outline! the following: Start
with a single-mode cavity whose excitation frequency
tuned toV. Send the pair of atomsA andB into the cavity
one after the other, with atomB first. Initially, both atoms
and the cavity are in their ground states

u0&A^ u0&B^ u0&EM , ~19!

where u0&EM denotes the vacuum state of the cavity. Aft
atomB is in the cavity, apply ap/2 pulse on it, which trans-
forms the state Eq.~19! into

1

A2
u0&A^ ~ u0&B^ u1&EM2u1&B^ u0&EM). ~20!

When both atoms are in the cavity, apply a second,p pulse,
this time on the atomA, thereby transforming the state E
~20! into

1

A2
~ u1&A^ u0&B2u0&A^ u1&B) ^ u0&EM , ~21!

which, for the atom pairA andB, is in the desired form Eq
~2! up to an overall phase factor. Since at each step the o
all quantum state~of atoms and the electromagnetic field! is
dark, no relative phase errors can creep in, and pure
tanglement distribution is achieved between atomsA andB.
Can this method be adapted to design a practical entan
ment transfer protocol between distant pairs of atoms usin
controlled cavity environment?

Avoiding entanglement distribution altogether. Can clas-
sical techniques of clock synchronization be improved in
curacy and noise performance by combining them with te
niques from quantum-information theory, which do n
necessarily involve~nondegenerate! entanglement distribu-
tion? A recent proposal in this direction was made
Chuang in@12#.

After this paper was submitted for publication, furth
ideas utilizing quantum entanglementwithout entanglement
distribution to improve the accuracy of classical Einste
synchronization have been proposed in Refs.@13–15# ~see
also @16# for an overview!.
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